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Optimization of Team Assignment Based on a Kill-Death Ratio Match Making 

System as Applied to Online Battle Royale-Style Video Games Using SAS 
Austin S Bohlin, Nilabh Chaturvedy 

 

Introduction to the Problem 

Our team was tasked with building a skill-based matchmaking system (SBMM) using kill-death ratio 

(K/D) as the sole match making rating (MMR) factor.  We were provided a list of 300 players and 

their respective K/D’s, 3 lobbies and their respective K/D targets, and a list of premade player teams.  

This system is built with the given assumption that each queue will be served as a batch of players, 

with no players joining the queue after the pairing process has started.  This specific model was built 

and tested using the given batch player size of 300.  It was given that each player has the option of 

preselecting their teammate and all other players will be assigned 1 teammate.  We assume that 

there is no exception to the team size and this model will only work for teams of 2.  Each team must 

be assigned to a lobby that best matches that team’s combined K/D.  Each lobby requires between 

48 and 52 teams. 

 

We made a few additional assumptions before creating this model.  We assume that each player 

must have played the game before and has a K/D, as no base value is assigned for missing K/D 

values.  This means that the model will not work if a player has not played the game and a default 

K/D value was not created to pass to the solver.  Additionally, we assume that each list of players 

passed to the solver will be an even number between 2*48*(number of lobbies) and 2*52*(number 

of lobbies) as the lobbies strictly require between 48 and 52 teams, and a non-even number of 

players will break the “each player needs a team” requirement.  There is no limit on the number of 

players that can be in a premade team, as long as those teams only have 2 players.  With these 

assumptions in mind, we can now discuss our approach to solving this problem. 

 

Methods 

We began this problem by identifying how a to structure the problem so a MILP could solve it.  We 

imported the data so Players would be a set of all 300 players and Lobbies would be a set of all 3 

lobbies.  Our first attempt at this was to make 2 binary matrixes, 1 to keep track of teams and 

another to keep track of lobbies: 

 

𝑇𝑒𝑎𝑚𝑠[𝑖, 𝑗] =          (

𝑡1,1 ⋯ 𝑡1,300

⋮ ⋱ ⋮

𝑡300,1 ⋯ 𝑡300,300

)  | 𝑖 ∈ 𝑃𝑙𝑎𝑦𝑒𝑟𝑠, 𝑗 ∈ 𝑃𝑙𝑎𝑦𝑒𝑟𝑠  

 

𝐿𝑜𝑏𝑏𝑦𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠[𝑖, 𝑘] =         (

𝐴1,𝐴 𝐴1,𝐵 𝐴1,𝐶

⋮ ⋮ ⋮

𝐴300,𝐴 𝐴300,𝐵 𝐴300,𝐶

)   | 𝑖 ∈ 𝑃𝑙𝑎𝑦𝑒𝑟𝑠, 𝑘 ∈ 𝐿𝑜𝑏𝑏𝑖𝑒𝑠 

 
Using this approach, we realized it would make it impossible for the solver to work, as it would be 
duplicating data, and would have too many decision variables for a LP to work.  We decided the best 
way to get around this is to combine the above matrixes into one of a higher complexity.  We arrived 
at using a binary 3-Dimensional solution space that combined all the players on 2 axes and the 
lobbies on the 3rd: 
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(

𝑔1,1,𝐶 ⋯ 𝑔1,300,𝐶

⋮ ⋱ ⋮
𝑔300,1,𝐴 ⋯ 𝑔300,300,𝐶

) 

(

𝑔1,1,𝐵 ⋯ 𝑔1,300,𝐵

⋮ ⋱ ⋮
𝑔300,1,𝐴 ⋯ 𝑔300,300,𝐵

) 
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𝐺𝑟𝑜𝑢𝑝𝑠[𝑖, 𝑗, 𝑘] =       (

𝑔
1,1,𝐴

⋯ 𝑔
1,300,𝐴

⋮ ⋱ ⋮

𝑔
300,1,𝐴

⋯ 𝑔
300,300,𝐴

)   |  𝑖 ∈ 𝑃𝑙𝑎𝑦𝑒𝑟𝑠, 𝑗 ∈ 𝑃𝑙𝑎𝑦𝑒𝑟𝑠, 𝑘 ∈ 𝐿𝑜𝑏𝑏𝑖𝑒𝑠 

 

Since this matrix would be set up as a binary, where Groups[i,j,k]=1 will show not only who is 

assigned on the same team, but also what lobby they are assigned to.  While this matrix is more 

difficult to look at, it is one that allows the MILP to solve the system.  Once we had a matrix that 

could be assigned solutions, we needed to work on the objective function.  Before we discuss the 

objective function, we must first discuss something special about our matrix Groups. 

If we examine what will happen at the end of the solver, we will see that 𝐺𝑟𝑜𝑢𝑝𝑠 = 𝐺𝑟𝑜𝑢𝑝𝑠𝑇 which 

means that Groups is symmetrical.  We can use this property to our advantage when it comes to our 

objective function.  If we think about each value in Groups each team appears twice, once in 

Groups[i,j,k] and again in Groups[j,i,k] since each teammate in a team is a teammate with the other.  

This means that all the information we need is in the top right corner of the matrix, for example let’s 

examine a matrix of just 4 players: 

[

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

] 

 

We can see that player1 is paired with player2 and player3 with player4.  But this information is in 

the table twice.  We can figure out who is on whose team by looking only at the top right half of the 

matrix, or put another way, where 𝑖 < 𝑗.  This means we can narrow our criteria for almost all our 

constraints and objective function by more than half!  If you can already get the information of 

who’s on what team from half the matrix, you don’t need to even consider the other half.  Now with 

this insight revealed, we can move on to discussing the objective function. 

 

We came up with 2 different interpretations for the objective function and will discuss the merits of 

both in the results section.  The first solution is minimizing the absolute difference between team 

K/D (given as 𝑇𝑒𝑎𝑚 𝐾𝐷 = 𝐾𝐷𝑃𝑙𝑎𝑦𝑒𝑟1 + 𝐾𝐷𝑃𝑙𝑎𝑦𝑒𝑟2) and lobby target K/D: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ 𝐺𝑟𝑜𝑢𝑝𝑠𝑖,𝑗,𝑘 ∗ |𝑇𝑎𝑟𝑔𝑒𝑡𝐾𝐷𝑘 − (𝑃𝑙𝑎𝑦𝑒𝑟𝐾𝐷𝑖 + 𝑃𝑙𝑎𝑦𝑒𝑟𝐾𝐷𝑗)|)

(𝑖,𝑗)∈𝑃𝑙𝑎𝑦𝑒𝑟𝑠2:𝑖<𝑗
𝑘∈𝐿𝑜𝑏𝑏𝑖𝑒𝑠

 

 

Please note the (𝑖, 𝑗) ∈ 𝑃𝑙𝑎𝑦𝑒𝑟𝑠2: 𝑖 < 𝑗 binds i and j to only the square matrix space of the players 

list where 𝑖 < 𝑗 as discussed in the above section.  Our other idea for the function was using a 

minimization of the square of the difference between the lobby target K/D and the Team K/D: 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ 𝐺𝑟𝑜𝑢𝑝𝑠𝑖,𝑗,𝑘 ∗ (𝑇𝑎𝑟𝑔𝑒𝑡𝐾𝐷𝑘 − (𝑃𝑙𝑎𝑦𝑒𝑟𝐾𝐷𝑖 + 𝑃𝑙𝑎𝑦𝑒𝑟𝐾𝐷𝑗))2)

(𝑖,𝑗)∈𝑃𝑙𝑎𝑦𝑒𝑟𝑠2:𝑖<𝑗
𝑘∈𝐿𝑜𝑏𝑏𝑖𝑒𝑠

 

Now that we have discussed how we formed the objective function, we need to discuss the creation 

of the constraints we can pull from the problem statement.  We will start with the constraints which 

we could not figure out how to incorporate the symmetrical matrix insight into, each player only 

being on 1 team and 1 lobby.  This means that each slice of the Groups matrix i-k plane and j-k plane 

must sum to 1 which means we cannot us the i<j method: 

𝑠. 𝑡.  ∑ 𝐺𝑟𝑜𝑢𝑝𝑠𝑖,𝑗,𝑘 = 1
𝑖∈𝑃𝑙𝑎𝑦𝑒𝑟𝑠
𝑘∈𝐿𝑜𝑏𝑏𝑖𝑒𝑠

, ∀𝑗 ∈ 𝑃𝑙𝑎𝑦𝑒𝑟𝑠 

𝑠. 𝑡.  ∑ 𝐺𝑟𝑜𝑢𝑝𝑠𝑖,𝑗,𝑘 = 1
𝑗∈𝑃𝑙𝑎𝑦𝑒𝑟𝑠
𝑘∈𝐿𝑜𝑏𝑏𝑖𝑒𝑠

, ∀𝑖 ∈ 𝑃𝑙𝑎𝑦𝑒𝑟𝑠 

This constraint will hold true with the identity matrix, which would mean players in a team with 

themselves, so we must set the diagonal to 0 to fix this: 

𝑠. 𝑡.  𝐺𝑟𝑜𝑢𝑝𝑠𝑖,𝑖,𝑘 = 0, ∀𝑖 ∈ 𝑃𝑙𝑎𝑦𝑒𝑟𝑠, 𝑘 ∈ 𝐿𝑜𝑏𝑏𝑖𝑒𝑠 

Now we must fix the number of teams per lobby to between 48 and 52.  For this one we can use the 

i<j method.  We will take each i-j plane and the sum of the top right half of that plane: 

𝑠. 𝑡.    48 ≤ ∑ 𝐺𝑟𝑜𝑢𝑝𝑠𝑖𝑗𝑘

(𝑖,𝑗)∈𝑃𝑙𝑎𝑦𝑒𝑟𝑠2:𝑖<𝑗

≤  52, ∀𝑘 ∈ 𝐿𝑜𝑏𝑏𝑖𝑒𝑠 

Now we must make sure each team has both teammates in the same lobby: 

𝑠. 𝑡.    𝐺𝑟𝑜𝑢𝑝𝑠𝑖,𝑗,𝑘 = 𝐺𝑟𝑜𝑢𝑝𝑠𝑗,𝑖,𝑘 , ∀(𝑖, 𝑗) ∈ 𝑃𝑙𝑎𝑦𝑒𝑟𝑠2: 𝑖 < 𝑗, 𝑘 ∈ 𝐿𝑜𝑏𝑏𝑖𝑒𝑠  

The last thing we needed was to fix the teammates as partners, while still allowing the program to 

pick their lobbies.  For this we had a data frame Premades that stored the teamid, teammate1, and 

teammate2.  Using this we could establish our last constraint: 

𝑠. 𝑡.   ∑ 𝐺𝑟𝑜𝑢𝑝𝑠𝑥,𝑦,𝑘 = 1

𝑘∈𝑙𝑜𝑏𝑏𝑖𝑒𝑠

, ∀(𝑥, 𝑦) ∈ 𝑃𝑟𝑒𝑚𝑎𝑑𝑒𝑠 

Please note, when passing team information, the player with the lower ID needs to be mentioned 

first, otherwise the solver might not pair them together.  Once all these constraints are put into the 

SAS OptModel package, we can solve our system with MILP.  We created a data frame from our 

solution Groups matrix to output the player pairings, lobby assignments, and team K/D using a short 

SAS code so we could export the solution to csv for analysis: 

    

1  

    

2  

create data solution from [player1=i player2=j lobby=a]= 

        {i in PLAYERS, j in Players, a in lobbies: 

             ((groups[i,j,a].sol = 1) & i<j)}  

        TeamKD=(player_kd[i]+player_kd[j]); 

Results 

The only comparison between the 2 different objective functions in SAS is that the absolute function 

ran slightly slower (.2 second difference).  Now we needed to compare the solutions outside of SAS.  
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A quick way to see how the optimization went is to view them on box plots.  To make this 

comparison easier to look at we calculate a new value: 

𝐾𝐷𝑑𝑒𝑙𝑡𝑎𝑠 = 𝑇𝑎𝑟𝑔𝑒𝑡𝐾𝐷𝑠 − 𝑇𝑒𝑎𝑚𝐾𝐷𝑠, ∀𝑠 ∈ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

This new value represents the difference in the team’s K/D from the assigned lobby’s target K/D.  

We calculated these knew variables in excel for each of the two objective functions, and then 

imported them to pandas for plotting purposes.  Using this we plotted the 2 different objective 

functions: 

 

We can see from these charts that Absolute solver keeps a tighter IQR but has a larger spread of 

outliers.  In fact, the Squared solver only has 2 outliers in the whole chart, both of which are the 

premade teams.  If I was a player in these lobbies, I would want to be assigned to the Squared 

lobbies as everyone would be closer in skill level as opposed to the majority that occurred with the 

Absolute solver.  There is such little difference between the highest and lowest scores, not counting 

premade teams, that either operation would be sufficient.  However, the Squared was the fastest 

and had the fewest outliers, so we selected this one as the final objective function.   

Our speed performance increased dramatically once we applied the i<j rule to most of the 

constraints.  Solve time went from around 12 seconds to the 6.58 seconds shown below: 

 

Regarding this solver’s accuracy, how do we know it found the optimal solution?  The graph sure 

makes it seem like this is the best solution as all lobbies have a spread of less than 0.1 not including 

outliers.  We can try to quantify an unrealistic optimal solution and then compare ours to that.  First, 
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we will start by assuming we can move K/D points around to other players to get an optimal fit.  We 

can take a sum of all the non-premade players K/D’s and try to fit them into lobbies based on that.  

For this data set the average non-premade team KD is 4.96483 and we can calculate the average K/D 

of the lobbies by averaging out the sum of targetKD*(# of teams per lobby): 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑀𝑜𝑣𝑒𝑎𝑏𝑙𝑒𝐾𝐷 =
51 ∗ 4.25 + 50 ∗ 5 + 47 ∗ 5.75

148
= 4.97973 

If we compare this to the average team K/D, we see it is off by 0.015.  We can then take this value 

and calculate the Z value of the solution: 

𝑍 = 148 ∗ (. 015)2 + (5.9053 − 5.75)2 + (4.05683 − 4.25)2 = 0.09473 

Compare this to our solutions Z value of 0.14376 and we can see what factor we are off by: 

𝐼𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐹𝑎𝑐𝑡𝑜𝑟 = (1 −
0.09473

0.14376
) = 0.341 

So out solution is 34.1% away from being the optimal solution that breaks the rules of how KD’s 

work.  This number taken with how tight the lobby distributions are in the box plots, makes us 

conclude that this solver worked with a high accuracy. 

Discussion 

So, the big question is how useful will this model be in deployment?  Unfortunately, after a few uses, 

this model will not be very useful at all.  The problem comes with the underlying assumption that 

K/D, by itself, is useful as a Match Making Rating (MMR), which we can run through a quick example 

to show that it is not.  Say we take our lobby of stars with an average team K/D of 5.75, what 

happens at the end of that match?  What are the new team K/D’s?  Well, if K/D was a good indicator 

of skill, then they should all be equally matched, and the average score should be 1 kill and 1 death.  

This makes a K/D of 1, which will now bring down the average K/D of each player in that lobby.  But 

that makes no sense, did every player somehow lose skill by playing the game with those of 

comparable skill level?  No, what’s happening is you are asking a metric from each round to also hold 

the information about the skill of players across all rounds.  A metric that, if lobbies are truly 

matched and equal, will always tend toward 1.  To further illustrate the absurdity of using K/D as the 

only MMR variable, think for a minute how it came to be that the average K/D of the players in the 

queue got to be substantially higher than 1.  Where are all the players that have the lower than 1 

K/D’s that would allow for a higher than 1 K/D to exist at?  

So clearly K/D will not work.  Instead, they should use some new MMR variable that stays with each 

player and only changes based on the outcomes of games given other players MMR.  If a player gets 

a high K/D in a game with other players of similar MMR, the high K/D player should gain a lot of 

MMR and the other players should lose some.  Similarly, if a player gets a high K/D in a game with 

other players of much higher MMR, they should be rewarded with much more MMR and the loses 

should lose a larger amount of MMR.  This way game designers are using K/D and post-game 

statistics to change the match making variables, as opposed to using those post-game statistics as 

the match making variables.  However, if an MMR system is fed into our algorithm, we will still be 

able to match make teams as there is no special requirement on the input player metric.  So, if the 

lobby targets where say changed to MMR targets of 800, 1200, and 1600, and we were given player 

MMR’s we could adequately pair players as we have demonstrated in this report.  However, a new 

algorithm will need to be developed to adjust these MMRs after the games conclude using end game 

statistics. 


